The determinant of a matrix (2024)

A matrix is an array of many numbers. For a square matrix, i.e., a matrix with the same number of rows and columns, one can capture important information about the matrix in a just single number, called the determinant. The determinant is useful for solving linear equations, capturing how linear transformation change area or volume, and changing variables in integrals.

The determinant can be viewed as a function whose input is a square matrix and whose output is a number. If $n$ is the number of rows and columns in the matrix (remember, we are dealing with square matrices), we can call our matrix an $n \times n$ matrix. The simplest square matrix is a $1 \times 1$ matrix, which isn't very interesting since it contains just a single number. The determinant of a $1 \times 1$ matrix is that number itself.

Moving up in complexity, the next square matrix is a $2 \times 2$matrix, which we can write as\begin{align*} \left[ \begin{array}{cc} a & b\\ c & d \end{array} \right].\end{align*}

We calculate the determinant of this matrix as follows. We proceedalong the first row, starting with the upper left component $a$. Wemultiply the component $a$ by the determinant of the “submatrix”formed by ignoring $a$'s row and column. In this case, this submatrix isthe $1 \times 1$ matrix consisting of $d$, and its determinant is just$d$. So the first term of the determinant is $ad$.

Next, we proceed to the second component of the first row, which isthe upper right component $b$. We multiply $b$ by the determinant ofthe submatrix formed by ignoring $b$'s row and column, which is $c$.So, the next term of the determinant is $bc$. The total determinantis simply the first term $ad$ minus the second term $bc$. Wedenote this as\begin{align*} \det \left(\left[ \begin{array}{cc} a & b\\ c & d \end{array} \right]\right) = ad-bc.\end{align*}

Okay, that was a lot of work for a simple fact. Most students don'thave any trouble memorizing the determinant of a $2 \times 2$ matrixwithout such rigmarole. The reason for going through this processwas to make calculating a $3 \times 3$ (and larger) determinant easy.

We calculate the determinant of a $3 \times 3$ matrix \begin{align*} \left[ \begin{array}{ccc} a & b & c\\ d & e & f\\ g & h & i \end{array} \right]\end{align*}in the exact same way. We proceed along the first row and multiplyeach component by the determinant of the submatrix formed by ignoringthat component's row and column. Through this procedure we calculatethree terms, one for $a$, one for $b$, and one for $c$. Each of theseterms is added together, only with alternating signs (i.e., the firstterm minus the second term plus the third term).

We can now write down the determinant of a $3 \times 3$ matrix.\begin{align*} \det \left(\left[ \begin{array}{ccc} a & b & c\\ d & e & f\\ g & h & i \end{array} \right]\right) &= a \det \left(\left[ \begin{array}{cc} e & f\\ h & i \end{array} \right]\right) -b \det \left(\left[ \begin{array}{cc} d & f\\ g & i \end{array} \right]\right) +c \det \left(\left[ \begin{array}{cc} d & e\\ g & h \end{array} \right]\right)\\ &=a(ei-fh) - b(di-fg) + c(dh-eg)\\ &=aei +bfg + cdh -afh -bdi -ceg\end{align*}

Now, I guess you could memorize the final formula for a $3\times 3$ determinant. But I'd rather use my brain's synapticconnections to do something more useful. In fact, I'm afraid if Itried to memorize it, I might forget something else important, likehow to combine like terms in algebra.

The above procedure generalizes to larger determinants. For example, to calculate the determinant of a $4 \times 4$ matrix, we'd have four terms, each of which would contain a $3 \times 3$ determinant. If we expanded all of those terms using the above formula for a $3 \times 3$ determinant, you can imagine we'd have a pretty ugly formula. That's too messy to write down. But if you had to, you could do it. Usually, though, we'd offload such an ugly and boring calculation to a computer.

Key fact to remember: the determinant is a single number calculated from a matrix.

Alternative notation

We often write a $2 \times 2$ determinant as $\left| \begin{array}{cc} a & b\\ c & d \end{array}\right|$ or a $3 \times 3$ determinant as \begin{align*}\left| \begin{array}{ccc} a & b & c\\ d & e & f\\ g & h & i \end{array} \right|.\end{align*}This notation is easier to write than the original notation above, sowe'll often use it.

However, note that in this case, the vertical lines do notmean absolute value. The determinant can be negative. Inmathematics, we like to use the same symbols to mean different things,which is okay as long as it's clear from context. Since the absolutevalue of an array of numbers is meaningless, the notation isunambiguous.

The determinant of a matrix (2024)
Top Articles
Latest Posts
Article information

Author: Tyson Zemlak

Last Updated:

Views: 6704

Rating: 4.2 / 5 (63 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Tyson Zemlak

Birthday: 1992-03-17

Address: Apt. 662 96191 Quigley Dam, Kubview, MA 42013

Phone: +441678032891

Job: Community-Services Orchestrator

Hobby: Coffee roasting, Calligraphy, Metalworking, Fashion, Vehicle restoration, Shopping, Photography

Introduction: My name is Tyson Zemlak, I am a excited, light, sparkling, super, open, fair, magnificent person who loves writing and wants to share my knowledge and understanding with you.