Properties of Determinants - Differentiation and Integration of Determinants (2024)

In linear algebra, a determinant is a special number that can be determined from a square matrix. The determinant of a matrix, say P is denoted det(P), |P| or det P. Determinants have some useful properties as they permit us to generate the same results with different and simpler entries (elements). There are 10 main properties of determinants: reflection property, all-zero property, proportionality or repetition property, switching property, scalar multiple properties, sum property, invariance property, factor property, triangle property, and co-factor matrix property. All the properties of determinants have been covered below in a detailed way, along with solved examples.

Download Complete Chapter Notes of Matrices & Determinants
Download Now

Topics in Determinants

  • Introduction to Determinants
  • Minors and Cofactors
  • Properties of Determinants
  • System of Linear Equations Using Determinants
  • Differentiation and Integration of Determinants
  • Standard Determinants

Download this lesson as PDF:-Properties of Determinants PDF

Important Properties of Determinants

1. Reflection Property

The determinant remains unaltered if its rows are changed into columns and the columns into rows. This is known as the property of reflection.

2. All-zero Property

If all the elements of a row (or column) are zero, then the determinant is zero.

3. Proportionality (Repetition) Property

If all elements of a row (or column) are proportional (identical) to the elements of some other row (or column), then the determinant is zero.

4. Switching Property

The interchange of any two rows (or columns) of the determinant changes its sign.

5. Scalar Multiple Property

If all the elements of a row (or column) of a determinant are multiplied by a non-zero constant, then the determinant gets multiplied by the same constant.

6. Sum Property

\(\begin{array}{l}\left| \begin{matrix} {{a}_{1}}+{{b}_{1}} & {{c}_{1}} & {{d}_{1}} \\ {{a}_{2}}+{{b}_{2}} & {{c}_{2}} & {{d}_{2}} \\ {{a}_{3}}+{{b}_{3}} & {{c}_{3}} & {{d}_{3}} \\ \end{matrix} \right|=\left| \begin{matrix} {{a}_{1}} & {{c}_{1}} & {{d}_{1}} \\ {{a}_{2}} & {{c}_{2}} & {{d}_{2}} \\ {{a}_{3}} & {{c}_{3}} & {{d}_{3}} \\ \end{matrix} \right|+\left| \begin{matrix} {{b}_{1}} & {{c}_{1}} & {{d}_{1}} \\ {{b}_{2}} & {{c}_{2}} & {{d}_{2}} \\ {{b}_{3}} & {{c}_{3}} & {{d}_{3}} \\ \end{matrix} \right|\end{array} \)

7. Property of Invariance

\(\begin{array}{l}\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|=\left| \begin{matrix} {{a}_{1}}+\alpha {{b}_{1}}+\beta {{c}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}}+\alpha {{b}_{2}}+\beta {{c}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}}+\alpha {{b}_{3}}+\beta {{c}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|\end{array} \)

That is, a determinant remains unaltered under an operation of the form

Ci → Ci + αCj + βCk, where j, k ≠ i

Or

An operation of the form Ri → Ri + αRj + βRk, where j, k ≠ i.

8. Factor Property

If a determinant Δ becomes zero when we put x = α, then (x – α)is a factor of Δ.

9. Triangle Property

If all the elements of a determinant above or below the main diagonal consist of zeros, then the determinant is equal to the product of diagonal elements. That is,

\(\begin{array}{l}\left| \begin{matrix} {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\ 0 & {{b}_{2}} & {{b}_{3}} \\ 0 & 0 & {{c}_{3}} \\ \end{matrix} \right|=\left| \begin{matrix} {{a}_{1}} & 0 & 0 \\ {{a}_{2}} & {{b}_{2}} & 0 \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|={{a}_{1}}{{b}_{2}}{{c}_{3}}\end{array} \)

10. Determinant of Cofactor Matrix

\(\begin{array}{l}\Delta =\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right|\;then \;{{\Delta }_{1}}=\left| \begin{matrix} {{C}_{11}} & {{C}_{12}} & {{C}_{13}} \\ {{C}_{21}} & {{C}_{22}} & {{C}_{23}} \\ {{C}_{31}} & {{C}_{32}} & {{C}_{33}} \\ \end{matrix} \right|\end{array} \)

Where Cij denotes the cofactor of the element aij in Δ.

Example Problems on Properties of Determinants

Question 1: Using properties of determinants, prove that

\(\begin{array}{l}\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{matrix} \right|=\left( a+b+c \right)\left( ab+bc+ca-{{a}^{2}}-{{b}^{2}}-{{c}^{2}} \right)\end{array} \)

Solution:

By using invariance and scalar multiple properties of determinants, we can prove the given problem.

\(\begin{array}{l}\Delta =\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{matrix} \right|\\=\left| \begin{matrix} a+b+c & b & c \\ b+c+a & c & a \\ c+a+b & a & b \\ \end{matrix} \right| [Operating {{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}}]\end{array} \)

\(\begin{array}{l}=\left( a+b+c \right)\left| \begin{matrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \\ \end{matrix} \right|\\=\left( a+b+c \right)\left| \begin{matrix} 1 & b & c \\ 0 & c-b & a-c \\ 0 & a-b & b-c \\ \end{matrix} \right| [Operating \left( {{R}_{2}}\to {{R}_{2}}-{{R}_{1}}\,and\,{{R}_{3}}\to {{R}_{3}}-{{R}_{1}} \right)]\end{array} \)

=(a + b + c) [(c – b) (b – c) – (a – b) (a – c)]

=

\(\begin{array}{l}\left( a+b+c \right)\left( ab+bc+ca-{{a}^{2}}-{{b}^{2}}-{{c}^{2}} \right)\end{array} \)

Question 2: Prove the following identity

\(\begin{array}{l}\left| \begin{matrix} -{{\alpha }^{2}} & \beta \alpha & \gamma \alpha \\ \alpha \beta & -{{\beta }^{2}} & \gamma \beta \\ \alpha \gamma & \beta \gamma & -{{\gamma }^{2}} \\ \end{matrix} \right|=4{{\alpha }^{2}}{{\beta }^{2}}{{\gamma }^{2}}\end{array} \)

Solution:

Take

\(\begin{array}{l}\alpha,\beta,\gamma\end{array} \)

common from the L.H.S. and then by using scalar multiple properties and invariance property of determinant, we can prove the given problem.

\(\begin{array}{l}\Delta =\left| \begin{matrix} -{{\alpha }^{2}} & \beta \alpha & \gamma \alpha \\ \alpha \beta & -{{\beta }^{2}} & \gamma \beta \\ \alpha \gamma & \beta \gamma & -{{\gamma }^{2}} \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}Taking \;\alpha ,\beta ,\gamma \; common\; from \;{{C}_{1}},{{C}_{2}},{{C}_{3}}\; \;respectively \;\;\Delta =\alpha \beta \gamma \left| \begin{matrix} -\alpha & \alpha & \alpha \\ \beta & -\beta & \beta \\ \gamma & \gamma & -\gamma \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}Now \;taking\; [\alpha ,\beta ,\gamma ] \;common\; from \;{R}_{1},{R}_{2},{R}_{3}\;respectively\end{array} \)

\(\begin{array}{l}\Delta ={{\alpha }^{2}}{{\beta }^{2}}{{\gamma }^{2}}\left| \begin{matrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ \end{matrix} \right|\end{array} \)

Now applying and

\(\begin{array}{l}{R}_{3}\to {R}_{3}+{R}_{1}\;we\; have \;\Delta ={\alpha }^{2}{\beta }^{2}{\gamma }^{2}\left| \begin{matrix} -1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}Now\; expanding\; along\; {{C}_{1}},\Delta {{\alpha }^{2}}\times {{\beta }^{2}}\left( -1 \right)\times {{\gamma }^{2}}\left( -1 \right)\left| \begin{matrix} 0 & 2 \\ 2 & 0 \\ \end{matrix} \right|=\;\;{{\alpha }^{2}}{{\beta }^{2}}\left( -1 \right){{\gamma }^{2}}\left( 0-4 \right)=4{{\alpha }^{2}}{{\beta }^{2}}{{\gamma }^{2}}\end{array} \)

Hence proved.

Question 3: Show that

\(\begin{array}{l}\left| \begin{matrix} \alpha & \beta & \gamma \\ \theta & \phi & \psi \\ \lambda & \mu & v \\ \end{matrix} \right|=\left| \begin{matrix} \beta & \mu & \phi \\ \alpha & \lambda & \theta \\ \gamma & v & \psi \\ \end{matrix} \right|\end{array} \)

Solution:

Interchange the rows and columns across the diagonal using the reflection property, and then using the switching property of the determinant, we can obtain the required result.

L.H.S. =

\(\begin{array}{l}\left| \begin{matrix} \alpha & \beta & \gamma \\ \theta & \phi & \psi \\ \lambda & \mu & v \\ \end{matrix} \right|=\left| \begin{matrix} \alpha & \theta & \lambda \\ \beta & \phi & \mu \\ \gamma & \psi & v \\ \end{matrix} \right|\end{array} \)

(Interchanging rows and columns across the diagonal)

\(\begin{array}{l}=\left( -1 \right)\left| \begin{matrix} \alpha & \lambda & \theta \\ \beta & \mu & \phi \\ \gamma & v & \psi \\ \end{matrix} \right|\\={{\left( -1 \right)}^{2}}\left| \begin{matrix} \beta & \mu & \phi \\ \alpha & \lambda & \theta \\ \gamma & v & \psi \\ \end{matrix} \right|\\=\left| \begin{matrix} \beta & \mu & \phi \\ \alpha & \lambda & \theta \\ \gamma & v & \psi \\ \end{matrix} \right|\end{array} \)

= R.H.S.

Question 4: If a, b, c are all different and if

\(\begin{array}{l}\left| \begin{matrix} a & {{a}^{2}} & 1+{{a}^{3}} \\ b & {{b}^{2}} & 1+{{b}^{3}} \\ c & {{c}^{2}} & 1+{{c}^{3}} \\ \end{matrix} \right|=0,\end{array} \)

prove that abc = –1.

Solution:

Split the given determinant using the sum property. Then, by using scalar multiple, switching and invariance properties of determinants, we can prove the given equation.

\(\begin{array}{l}D=\left| \begin{matrix} a & {{a}^{2}} & 1+{{a}^{3}} \\ b & {{b}^{2}} & 1+{{b}^{3}} \\ c & {{c}^{3}} & 1+{{c}^{3}} \\ \end{matrix} \right|\\=\left| \begin{matrix} a & {{a}^{2}} & 1 \\ b & {{b}^{2}} & 1 \\ c & {{c}^{2}} & 1 \\ \end{matrix} \right|+\left| \begin{matrix} a & {{a}^{2}} & {{a}^{3}} \\ b & {{b}^{2}} & {{b}^{3}} \\ c & {{c}^{2}} & {{c}^{3}} \\ \end{matrix} \right|\\=\left| \begin{matrix} a & {{a}^{2}} & 1 \\ b & {{b}^{2}} & 1 \\ c & {{c}^{2}} & 1 \\ \end{matrix} \right|+abc\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}={{\left( -1 \right)}^{1}}\left| \begin{matrix} 1 & {{a}^{2}} & a \\ 1 & {{b}^{2}} & b \\ 1 & {{c}^{2}} & c \\ \end{matrix} \right|+abc\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|\; \left[ {{C}_{1}}\leftrightarrow {{C}_{3}}\,in\,\,1st\,\,\det . \right]\end{array} \)

\(\begin{array}{l}={{\left( -1 \right)}^{2}}\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|+abc\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right| \;\;\left[ {{C}_{2}}\leftrightarrow {{C}_{3}}\,in\,\,1st\,\,\det . \right]\end{array} \)

\(\begin{array}{l}=\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|+abc\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|\\=\left( 1+abc \right)\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}=\left( 1+abc \right)\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 0 & b-a & {{b}^{2}}-{{a}^{2}} \\ 0 & c-a & {{c}^{2}}-{{a}^{2}} \\ \end{matrix} \right| \;\;\left[ {{R}_{2}}\to {{R}_{2}}-{{R}_{1\,\,}}and\,\,{{R}_{3}}\to {{R}_{3}}-{{R}_{1}} \right]\end{array} \)

\(\begin{array}{l}=\left( 1+abc \right)\left| \begin{matrix} b-a & {{b}^{2}}-{{a}^{2}} \\ c-a & {{c}^{2}}-{{a}^{2}} \\ \end{matrix} \right| \;(expanding \;along \;1st \;row) \\=\left( 1+abc \right)\left( b-a \right)\left( c-a \right)\left| \begin{matrix} 1 & b+a \\ 1 & c+a \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}=\left( 1+abc \right)\left( b-c \right)\left( c-a \right)\left( c+a-b-a \right)\\=\left( 1+abc \right)\left( b-a \right)\left( c-a \right)\left( c-b \right)\end{array} \)

\(\begin{array}{l}\Rightarrow D=\left( 1+abc \right)\left( a-b \right)\left( b-c \right)\left( c-a \right);\; But \;given \;D = 0\end{array} \)

\(\begin{array}{l}\Rightarrow \left( 1+abc \right)\left( a-b \right)\left( b-c \right)\left( c-a \right)=0 \end{array} \)

∴ ( 1 + abc) = 0

[since a, b, c are different

\(\begin{array}{l}a\ne b,b\ne c,c\ne a \end{array} \)

Hence, abc = -1

Question 5: Prove that

\(\begin{array}{l}\left| \begin{matrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \\ \end{matrix} \right|=2{{\left( a+b+c \right)}^{3}}\end{array} \)

.

Solution:

Simply by using switching and scalar multiple properties, we can expand the L.H.S.

Given determinant

\(\begin{array}{l}=\left| \begin{matrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \\ \end{matrix} \right|\end{array} \)

Applying

\(\begin{array}{l}{{C}_{1}}\to {{C}_{1}}+\left( {{C}_{2}}+{{C}_{3}} \right),\end{array} \)

, we obtain

\(\begin{array}{l}\left| \begin{matrix} 2\left( a+b+c \right) & a & b \\ 2\left( a+b+c \right) & b+c+2a & b \\ 2\left( a+b+c \right) & a & c+a+2b \\ \end{matrix} \right|\\=2\left( a+b+c \right)\left| \begin{matrix} 1 & a & b \\ 1 & b+c+2a & b \\ 1 & a & c+a+2b \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}{R}_{1}\to {R}_{2}-{R}_{1}\;\;and\;\;{R}_{3}\to {R}_{3}-{R}_{1}\;\;(given)\end{array} \)

\(\begin{array}{l}2\left( a+b+c \right)\left| \begin{matrix} 1 & a & b \\ 0 & b+c+a & 0 \\ 0 & 0 & c+a+b \\ \end{matrix} \right|\\=2\left( a+b+c \right)\left\{ \left( b+c+a \right)\left( c+a+b \right)-\left( 0\times 0 \right) \right\}=2{{\left( a+b+c \right)}^{3}}\end{array} \)

Hence proved.

Question 6: Prove that

\(\begin{array}{l}\left| \begin{matrix} {{a}^{2}}+1 & ab & ac \\ ab & {{b}^{2}}+1 & bc \\ ac & bc & {{c}^{2}}+1 \\ \end{matrix} \right|=1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}}\end{array} \)

.

Solution:

Expand the determinant

\(\begin{array}{l}\left| \begin{matrix} {{a}^{2}}+1 & ab & ac \\ ab & {{b}^{2}}+1 & bc \\ ac & bc & {{c}^{2}}+1 \\ \end{matrix} \right|\end{array} \)

by using scalar multiple and invariance properties.

L.H.S.=

\(\begin{array}{l}\left| \begin{matrix} {{a}^{2}}+1 & ab & ac \\ ab & {{b}^{2}}+1 & bc \\ ac & bc & {{c}^{2}}+1 \\ \end{matrix} \right|;\end{array} \)

Multiplying C1,C2,C3 by a, b, c, respectively

\(\begin{array}{l}=\frac{1}{abc}\left| \begin{matrix} a\left( {{a}^{2}}+1 \right) & a{{b}^{2}} & a{{c}^{2}} \\ {{a}^{2}}b & b\left( {{b}^{2}}+1 \right) & b{{c}^{2}} \\ {{a}^{2}}c & {{b}^{2}}c & c\left( {{c}^{2}}+1 \right) \\ \end{matrix} \right|;\end{array} \)

Now taking a, b, c common from R1,R2,R3, respectively.

\(\begin{array}{l}=\frac{abc}{abc}\left| \begin{matrix} {{a}^{2}}+1 & {{b}^{2}} & {{c}^{2}} \\ {{a}^{2}} & {{b}^{2}}+1 & {{c}^{2}} \\ {{a}^{2}} & {{b}^{2}} & {{c}^{2}}+1 \\ \end{matrix} \right|\\=\left| \begin{matrix} 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}} & {{c}^{2}} \\ 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}}+1 & {{c}^{2}} \\ 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}} & {{c}^{2}}+1 \\ \end{matrix} \right| \;\;\;\left[ {{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}} \right]\end{array} \)

\(\begin{array}{l}=\left( 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix} 1 & {{b}^{2}} & {{c}^{2}} \\ 1 & {{b}^{2}}+1 & {{c}^{2}} \\ 1 & {{b}^{2}} & {{c}^{2}}+1 \\ \end{matrix} \right|\\=\left( 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix} 1 & {{b}^{2}} & {{c}^{2}} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right| \;\;\left[ {{R}_{2}}\to {{R}_{2}}-{{R}_{1}}\,and\,\,{{R}_{3}}\to {{R}_{3}}-{{R}_{1}} \right]\end{array} \)

\(\begin{array}{l}=\left( 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( 1 \right)=1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=R.H.S.\end{array} \)

Hence proved.

Matrices and Determinants – Important Topics

Properties of Determinants - Differentiation and Integration of Determinants (1)

Matrices and Determinants – Important Questions

Properties of Determinants - Differentiation and Integration of Determinants (2)

Matrices and Determinants – Top 10 Most Important and Expected JEE Main Questions

Properties of Determinants - Differentiation and Integration of Determinants (3)

Frequently Asked Questions

Q1

What do you mean by the reflection property of determinants?

The determinant remains unchanged if the rows are changed into columns and the columns into rows. This is known as the property of reflection.

Q2

What happens to a determinant if 2 rows or columns are interchanged?

The determinant changes its sign when 2 rows or columns are interchanged.

Q3

State the proportionality property of determinants.

If all the elements of a row or column are proportional or identical to the elements of another row or column, then the determinant is zero. This is also called the repetition property.

Q4

What do you mean by the triangle property of determinants?

If all the elements of a determinant above or below the main diagonal are zeros, then the determinant is equal to the product of diagonal elements.

Q5

Can a determinant be zero?

Yes, a determinant can be zero, negative or positive.

Q6

Is the determinant of an identity matrix equal to 1?

Yes, the determinant of an identity matrix is always 1.

Q7

What do you mean by all zero property of determinants?

According to all zero property of determinants, if all the elements of a row/column are zero, then the determinant is equal to zero.

Q8

If A-1 is the inverse of matrix A, then what is det A-1?

If A-1 is the inverse of matrix A, then det A-1 = 1/det A.

Properties of Determinants - Differentiation and Integration of Determinants (2024)

FAQs

What is the easiest way to solve determinants with properties? ›

Some basic properties of Determinants are given below:
  1. If In is the identity Matrix of the order m ×m, then det(I) is equal to1.
  2. If the Matrix XT is the transpose of Matrix X, then det (XT) = det (X)
  3. If Matrix X-1 is the inverse of Matrix X, then det (X-1) = \[\frac{1}{det (X)}\] = det(X)-1.

What is the property 7 of determinants? ›

7. Triangular Property: The value of the determinant is equal to the product of the components of the diagonal of the matrix if the elements above and below the main diagonal are both equal to zero.

What are the properties of determinants summary? ›

Properties of Determinants are the properties that are required to solve various problems in Matrices. There are various properties of the determinant that are based on the elements, rows, and columns of the determinant. These properties help us to easily find the value of the determinant.

How do you differentiate a determinant example? ›

To differentiate a determinant, we first have to differentiate one row (or column) at a time, keeping others determinants unchanged. Eg: Let f(x) = | x 2 + a 2 a x 2 + b 2 b | , find F(x).

What is the basic formula for determinants? ›

The determinant is: |A| = a (ei − fh) − b (di − fg) + c (dh − eg). The determinant of A equals 'a times e x i minus f x h minus b times d x i minus f x g plus c times d x h minus e x g'.

Is matrices and determinants hard? ›

… Matrix and Determinant is one of the easy and tough chapter both at the same time.

What is the 6 property of determinant? ›

Property 6:

If the equimultiples of corresponding elements of other rows (or columns) are added to every element of any row or column of a determinant, then the value of determinant remains the same, i.e., the value of determinant remain same if we apply the operation Ri → Ri + k Rj or Ci → Ci + k Cj .

What are the 7 types of properties? ›

There are various types of properties under the law which are categorised as:
  • Movable Property. Movable property can be moved from one place to another without causing any damage. ...
  • Immovable Property. ...
  • Tangible Property. ...
  • Intangible Property. ...
  • Public Property. ...
  • Private Property. ...
  • Personal Property. ...
  • Real Property.
Nov 29, 2022

What are the five properties of determinants? ›

Properties of determinants of matrices

The determinant is the same in any row or column. The value of the determinant is 0 if all of the elements of a row (or column) are zeros. Identity matrix determinant (In) is 1. If the rows and columns are swapped, the determinant's value remains the same (value does not change).

What is an example of a determinant property? ›

Example of Triangle Property of Determinants:

|a1a2a30b2b300d3|=|a100b1b20d1d2d3|=a1b2d3 This is also known as the triangle property of determinants.

Can you multiply two determinants? ›

We should know that determinants can be multiplied together only if they are of the same order. And also, the process of interchanging the rows and columns will not affect the value of the determinant. So, we can multiply determinants in various ways.

How to calculate the determinant? ›

To find this determinant, first get the minors of each element in the second column. Now find the cofactor of each of these minors. The determinant is found by multiplying each cofactor by its corresponding element in the matrix and finding the sum of these products.

What are the two properties of determinant? ›

Property 1:The rows or columns of a determinant can be swapped without a change in the value of the determinant. Property 2: The row or column of a determinant can be multiplied with a constant, or a common factor can be taken from the elements of the row or a column.

What is a determinant in real life? ›

You can also use determinants in plotting graphs, statistics, scientific studies, and research in different areas. Determinants help represent the data like the population of people, death rate, hunger rate, etc. It is basically a method for plotting surveys.

How does the determinant change? ›

Computing a Determinant Using Row Operations

If two rows of a matrix are equal, the determinant is zero. If two rows of a matrix are interchanged, the determinant changes sign. If a multiple of a row is subtracted from another row, the value of the determinant is unchanged.

What is the easiest way to find the determinant of a matrix? ›

To evaluate the determinant of a 3 × 3 matrix we choose any row or column of the matrix - this will contain three elements. We then find three products by multiplying each element in the row or column we have chosen by its cofactor. Finally, we sum these three products to find the value of the determinant.

What is the method of using determinants to solve? ›

Cramer's Rule is a method of solving systems of equations using determinants. It can be derived by solving the general form of the systems of equations by elimination. Here we will demonstrate the rule for both systems of two equations with two variables and for systems of three equations with three variables.

Top Articles
Latest Posts
Article information

Author: Kareem Mueller DO

Last Updated:

Views: 6164

Rating: 4.6 / 5 (66 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Kareem Mueller DO

Birthday: 1997-01-04

Address: Apt. 156 12935 Runolfsdottir Mission, Greenfort, MN 74384-6749

Phone: +16704982844747

Job: Corporate Administration Planner

Hobby: Mountain biking, Jewelry making, Stone skipping, Lacemaking, Knife making, Scrapbooking, Letterboxing

Introduction: My name is Kareem Mueller DO, I am a vivacious, super, thoughtful, excited, handsome, beautiful, combative person who loves writing and wants to share my knowledge and understanding with you.